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SUMXARY _.- 

The analysis of the bendins action in box beams with 
anarecfable shear deformation of the flanges becomes very I^ 
difficult in the Tenera case of variable cross section 
and loading. This Daper presents a convenient method of 
solving the problem by the familiar method of dividing the 
beam into a number of bays that can be assumed to have 
constant cross. section and loadins. Application of for- 
merly derived shear-lag formulas leads to a general equn- 
tion closely analogous in form to the well-known three- 
moment equation. A numerical example and two comparisons 
between calculation and experimental-results are includedc 

IKFRODUCTIOH 

In the sheet-stringer combinations typical of prssent- 
day aircraft construction, the distribution of the stress- 
es is materially influenced by3 the shear deformation of the 
sheet. A b.asic theory for this ffshear-lag't problem was 
discussed in reference 1 and the analysis of sinqle- 
stringer structures, such as shown in figure 1, was in- 
cluded for simple cases. Reference 2 showed that the ad- 
ditional mathematical difficulties introduced by multi- 
stringer structures, such as shown in figure 2, could be 
circumvented by using "substitute single-stringer struc- 
tures.ll 

The analysis of even a single-stringer structure, 
however, presents difficulties in the g.eneral case, in 
which the cross section as me11 ss the loading may vary 
alonq -the length of the structure. In reference 3 were 
discussed various methods of dealing with this problem by 
means of numerical intsqration methods. These methods 
furnish a comaarativoly simple solution,-aoa8~derin$ the 
complexity 0f':the problem, but they are inadequate for 
taking into account all the possible variations of parame- 
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tcrs. One result of this weakness is that the solutions 
may be reliable only near the root of the beam, a serious 
drawback in all of the cases where it is not certain that 
the critical section will be near the root. For such 
cases, mathematically more rigorous methods of solution 
are desirable. A principle for such a method was given 
in reference 1 in a very brief form; the present paper 
shows in detail the most convenient manner of setting up 
the equations and also shows comparisons of theory with 
test data. 

BASIC ASSUMPTIONS AND.SIMPLIFICATIONS 

For the saks of completeness, the basic assumptions 
and methods of Procedure will be summarized. 

The beam is idealized by assuming each stringer to- 
gether with a certain effective width of sheet to be con- 
centrated at its centroid. The resulting idealized 
.stringers are assumed to carry only longitudinal stresses. 

The sheet is assumed to carry all the shear. When 
the sheet buckles, allowances must be mad-e for the reducad 
shear modulus, When reasonably heavy stringer6 are at- 
tached to the sheet by two rows of-rivets, it is suffi- 
ciently accurate to consider only the "free" width of 
sheet as being subjected to shear deformation. 

The transverse stiffness 
to be.infinito. 

E, of the cover is assumod c 

The shear stiffness G of shear webs in beams is as- 
sumed to be infinite. 

For a beam with a number of strirgera, which is the 
usual case, the stringers are replaced by n single "sub- 
stitute" stringer (reference 2). 

The material on the side onoosite to the one being -, - 
analyzed is, in general, assumed to be concentrated into a 
compact flange attached directly to the shear wob, con- 
vertinq the. closed b-ox into $n open box. For example, 
when the tension aide of the beam is beint: analyzed, all 
the compression material is assumed to be concentrated 
into a flange attached to the shear web. The effective 
cantroid forthis flange may be ostimated, wit-h some al- 
lownnco boinq made for shoar-lag action, on the basis of 
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experience or of a fL‘rst calculation. Typical cross sec- 
tions of the resultin$ substitute single-stringer beams 
are shown in figur-es 3(a) and 3(b). As indicated by the 
dotted lines, the boams are assumed to be symmotrZca1 about 
a longitudinal plane so that only one-half of the structure 
needs to be analyzed. 

The substitute beam givee the stresses in the corner 
flange of the actual multistringer beam. The calculation 
of the normal stresses in the stringers and of the shear 
stresses in the sheet of the actual beam is dealt with in 
reference 2. 

All calculations qiven in this paper deal only with 
single-stringer beams. The subscript 6 denoting sub- 

stitute (reference 2) is therefore omitted as UnneCesB&f?ye 

More detailed diSCuBsionS of theSe.aBSUmptiOnB and of 
the basic theory, as ~811 as the symbols and the sfgn con- 
ventions used, mill be found in references 1 and 2. 

GENERAL PRINCIPLES OF AYALYSIS 

Direct analytical Bolutlons of the Bhear-lag problem 
have thus far been given only for simple cases. Refer- 
enceB 1 and 2 give Solutions for beams in which the cross 
section is constant and the running shear in the web 
WhW is copstant. 

Actual %eams mill usually have a variable croB8 sec- 
tion and loading. Numerical solutions for such cases are 
obtained by a familiar expedfent: The beam ia divided into 
a number of bayB BO that no appreciable error is committed 
by assuming that the croSB sectlon and the running Siear 
in the web are constant sithin each bay. The known analyt- 
ical solutions can then be applied to each individual bay. 

The complete numerical solution requfres the knowl- 
edge of (r + 1) boundary conditions for a beam with r 
bays. Two of these conditions are furnished by the known 
conditions at the ends of the beam, the root, and the tip. 
The remaining conditions are furnished by the principle of 
elastic continuity, which requires that the elastic defor- 
mation at the outboard end of any bay must eqqal the elas- - - 
tic deformation at the inboard end'of the next bay adjofn- 
ing it, 
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DERIVATIdN OF E~iTJATiONS FOR SEAMS WITH FLAT COVER 

nND'CONSTGTT '.PIDTH AND DEPTH ' 

The beam is divided into bays as shown in ficrure 4, 
and the bays and the stations are tiumbered as indicated. 
Figure 5 shows the two adjacent calls n and. n+l aB 
free bodies on-which the forcos act. For'the derivation 
of+th-e -Bquations, it mill be assumed that the upper side 

. of the beam is being analyzed for shear-lag efPccts; the 
loner side is therefore assumed to be concentrated into 
a flange attached to ,the shear web. 

In- fiqurc 6, the flanqe and the longitudinal stringer 
forces FF and. FL are separat.ed into two S;roups of 
fdrCf3.B t 

i -. _. _. 

(1) The group of r"arcos shown in fiFCr?b Z(k]m, do- 
noted by the superscript P indicating that 
these'forces are calculated by the ordinary 
bending theory, which assumes that plEno 
cross sections remain plane and (tacitly) 
that the shear modulus is infinito. 

-% 

. 

__-_ 
(2) The group of forcos X shown in fiSure 6xb) 

representing the changes in strinqer forces 
caused by shear deformation of the cover 
sheet, 

Since,the first group of forces is in equilibrium by it- 
self, tho second group must also bo ln.oquilibrium by it- 
calf; 'that Tie',' the force XF nctinq'on t-he flani;e at any 
?ive$ station must be equal and opposite to-the f.orce .XL 
.3ctinq on the lonSitudina.1 at the: same stati0.n. This re- 
sult :VFLB anticipated in figure 6(b) .by omitting tile Bub- 
scripts .F and L from X, 

The chief reason for separating the forces into the 
P-%roup.and the X-group is economy of arithmetic. The 
stntically indeterminate cnlcuLa.ti.on of tbo shear-lag of- 
facts furnishes corrections only to the stresses computed 
by thu ordinary bendin< theory and can therefor- b.eI;arried 
throuih with a lessor degree of ac'curacy than would be ro- 

'_ 

quirod if the total forcea-wore chosen as statically inde- 
terminato unknowns, 

-, 

The groups of f-orces actinq on each bay arc associat- 
cd with shear forces in the cover shoet. The deformations 
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caused by,these shear forces will be calculated for the 
inboard end of bay n and for the outboard end of bay 
n i- 1. If the two deformations are equated in accordance 
with the principls of elast-ic dontinuity, a general 8x- 
pression mill--be obtained that will relate-the ,X-forces at 
three successive stations with %ho properties of the two 
bays between these stations. 

Figure 7 shows the cover of bay n wit-h t'he forces 
acting on it separated into groups. The P-group calculat- 
ed by the ordinary bending theory is shown in figure 7(a). 
The shear stress accompanyinq this group causes the shear 
deformation Ynip at the inboard end of'tha bay as indi- 
cated, the superscript P indicating the force group caus- 
ing the deformation and the sub-subscript f- -denoting the 
inboard end. Figure 7(b) shows the X,-group acting-at the 
inboard end of the bay. The shear stresses associated 
with this group cause the shear deformation Yni xn, Fig- 
ure 7(c) shows the X,,, -group .acting at the outboard end 

---_ 

of the bay; the shear stresses associated with this group- 
cause the shear deformntion X Yni n--I at the inboard end. 
The total shear deformation at the inboard end of bay n 
is 

Y ni 
= y 

nz 
p + y 

nzi 
xn + + xn*i 

ni (1) 

Similarly,'the ,shear deformation at the outboard end of - - .-- ., 
bay n+l is 

Y n+l), = '(n+L), 
P 

+ '(n+ijO xn + Y (n+ 11~ 
gn+ 1 (2) 

where the sub-subscript o denotes the outboard end. The 
familiar formula 7 = f! of the ordinary bending'theory 
gives 

yi 
P = YoP = YP = $- =t - %*L 

e h+TC, (3) 

The numerical values of this deformation can be computed 
for each bay, using average values for tho individual 
factors. 
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By application of formulas (3-S) of reference 1, and 
introducing nem'symbols p and g... for convenience, it 
is found that 

,Y xn Icn 
ni = 

-xn t--- n Oen . 'tanh(KL), 

. 

= ‘xn Pn (4) 

Y x,-l Kn 
ni = Xn-1 --cI------P . .(5-J 

tn G8n sinh(KL!n 
= %-:I qn 

- . _ 

Y (n+ l)o Xl-l xn Kn+i =.y .x, CT------- n xn Pn+l c6) 
enfl 

tanh(KL)n+l 

K n+ 1 ---w------y--- 
e n+ 1 

'einh(XL)n+l = 7Xn+l Qn+1 

-(7) 

In these formulas, AT = AF + AL, and the parameter K 
1s defined by 

G- t g2 =-XL 
Eb 

(8) 

Substituting the expressions (4) to (7) into (1) and 
(2) and equating Yni to y(n+ lJo qive the Qeneral re- 
lation 

X n- 1 qn - xn(Pn + Pn+l) + xn+l 9n+l .= -'np + ',*I' (9) 

wBich.fs the basic recurrence formula forthe shear-lag 
problem. The unknown forces -X are obtained by solving a 
System similar to the familiar system of three-moment equa- 
tfons; i.e., a system OF-n equations, each equation ex- 
cept the last one and usually the first one involving 
three unknowns. . 

l 

. . . 
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DOUGDAR~ GO~DITIONS 

l 

\.-- 

' The first equation of the system is 

xo% . - x&(P,: + pa)'+ xzq2 = - y, + y2 
. 

(10) 

if only transverse.loads are applied to t.he shear web 
(fig. 8(a)), 

x0 = 0 

If a couple P hW is introduced at the tip of the shear 
web (fig. S(b)), then 

x0 = p kJd 
AT 

The last equation of the system is 

X r-iqr -'Xrpr = 'Y, + Y,& 

(11) 

(12) . 

In this equation, Y,+, is the llequivnlent't shear d8fOr- 
mation of the foundation to which the beam is attached. 
This deformation is defined by 

Y =- r+l t (13) 

where. S is the relative longitudinal displacement of the 
root fittings at the flanqe F and at the longitudinal- L. 

The conditions at the root will fall under one of 
three classifications: 

(1) R2gid foundation.- A&thouSh a perfectly zrT,qsfd 
foundation is physically impossible, the foundation may 
be stiff enouqh to be considered rigid, -and the-displace- 
ment 6 will bo zero. .In .practic+l cases, the condition 
of zero displacement may b8 obtained by symmetry of the 

,bean about the plane of station r. ~ -- 1 
(2) Foundation alding elastically.-or inelastically.- --------- -_ 

The case of a foundation that yields elastically or inelas- 
tically occurs, for instance, when the stresses in a wing 
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are carried throdqh the fusel.age.by transverse membera; 
the elongation of these members under load permits rela- 
tive displacements 6 of the root fittings on the wins;. 
These displacements may be obtained by successive approxi- 
mation; in the case of elastic yielding, a carry-throuph 
member may be trsated,as an additional bay of the beam, 
addins one unknown and one equation to the system. 

(3) Lon%itudinal free at-the root.- The-sass of the 
lonqitudinal that is unconnected at the root occurs, for 
instance, at the tension side of a beam when the stringers 
butt against the center section but are unconnected to it- 
(or when the connection is too flexible to be taken into 
account structurally). In this case, the last equation 
of the system disappears, and Xr is determined by static 
considerations to be 

M AL xr A - - 
hW AT 

04) 

BEAM FITH CAMBERED COVER AND TAPER IN 

DEPTH AXD WIDTH 

The basic formulas <iveil in the preceding sections 
require some modifications when the cover is cambered, when 
the beam is tapered in depth,. in width, or in both. 

In a beam with cambered cover as shown in figure 3(b), 
the parameter K is defined by (reference 2) 

f 1+ c 
----- (15) 

In addition to the X-gro'&, it is neces'sary, for reasons 
of static equilibrium, to,int,roduce also a qroup of forcee 
XC 

hTi 
acting as shown in figure,.9. These forces do.not ap- 

pear in the statioally indeterminate calculation because 
they do not cause shear deformation of the cover: they 
must be taken into account, however, when the stresses in 
the flanges are computed. 
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In a beam with a'flat cover, s'hear-la< action in the 
flat-cover side of' the beam does -not--change-the total 
force on the opposite side of the beam at any siven sta- 
tion; for instance, shear-la< action on the tension side 
does not change the total force on the compressionside 
if the tension side has a flat cover. Shear-lag action on 
a cambered cover, hoEever, does change-the total-force-on 
the opposite side of the beam by the amount X& because - -. 
the 'shift of force between the longitudinal and the flanqc 
on the cambered side reduces .the effebtive depth of the 
beam. 

--_. :_ 

In a beam with cambered covers on both sides (fi%. 
10) and with cross sections symmetrical about both axes, 
it fs obviously unnecessary to analyze one side of the 
beam at a time; the conversion of the closed box into an 
open box by combining all the material on one side into a 
single flange attached to the web is therefore omitted. 
The parameter K is defined by .- 

(16). 

and the additional force <rouT acting on the upper and the 
I* ? . i P ? -- -_ -. c 0 12 i r .._ 
lower cornar flanges is X FT. 

In a beam with cambered cover, the basic equation (3) 
must be written in the more general form 

YP S*L% = z-m- 
Ge It (17) 

Also, equations (11) and (14) for the boundary condi- 
tions must be written in the mo:re generalform - ___. - -v ._ 

and 
x0 

r, = phm I ---r- + 7% (lla) 

(14a) 

In a beam tapered in dep.th, the s5ear S in equations 
(3) and (17) must be understood to be the difference between 
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the.external shear and the vertical comscnents of the 
5trtWer forces as eiven by th-e familiar formula 

(18) 

where h is the effective depth of the beam and 6 is 
the inclination between the effective compression flange 
and the effective tension flange. For a beam with cnm- 
bered cover, equation (18) may be written in the more sen- 
era1 forti 

S = SE - ? tan 6 (19) 

where Q is the static mom-ent of AF and AJ, about the 
centroidal axis, 

Serious theoretical difficulties arise when the beam 
has taper in width. The method of analysis developed thus 
far may be considered dependent upon two distinct basic 
theories: the engineering theory of bending and the sim- 
plified theory of shear deformatfon in a skin-stringer 
combination. Both-theories break down when the beam has 
taper fn width, so that the developmeht of an entirely 
rational theory is impossible without utilieinq or devel- 
opin$ considerably more refined basic theories. 

As a temporary solution for enqineerine purposes, a 
semirational modification of the procedure for beams with 
constant width may be.used. The actual width b and the 
actual thickness t of the sheet are replaced by a ficti- 
tious width bf and a fictitious thickness tf. The fic- 
titious medth at any given station is ,taken as 

= b, 

where b is the actual width at the station and b, the 
actual width at the root; the introduction of this ficti- 
tious width converts the tapered beam into a beam of con- 
stant width equal to the width at the root of the tapered 
beam. 

, 

The fictitious thickness tf- at any station may be 
so determined that the shear stiffness of the fictitious 
sheet wiil equal the shear stiffness of the actual sheet 
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at that station. Because the shear st iffness 6f the sheet 
is proportional to t/b, this method of procedure would 

. require that - --- 
c L 

b0 
tf = t T (211 

The use of this fictitious thickness then compensates for 
the use of a fictitious-width; at any station along -the 
span, the shear-lag parameter .K of the fictitious beam 
with constant width equals the parameter K of the actual 
beam vith tapered width. The cdefficients Pn, qn, dn3 y,, 
as defined by equations (3) to-(71, are chanKed because- 
they involve ' t independently of b. 

Considerations of the-limitin case of a beam tapered 
to a point tend to indicate that this method of.compensa- 
tion is inadequate,. and comparison-tiith the,fests of' 
N.A.C.A. beam 4 described in reference-2 ZEois-?a-her-poor 
agreement. More satisfactory agreement betmeen.this,test -- and calculation is obtained when the ficfi%ious &l;cknoss 
is taken as - 

i. ._ m;* .5 

i > 
b, tf=t b 

The use of this value for the fictitious thickness chanses 
not only the coefficients p, a, and Y but aIs the shear- 
lag. parameter IT at each station. 

Physically, the use of equations (2%) and (21) may be 
interpreted as taking into account only the-direct effect - 
of variable width on*the shear stiffness and nee;lectin% 
all the effects of transverse components of forces caused 
by the inclination of the flanse toward the center- sf;rlnF- 
err The use of equation (22) represents an attempt to 
take into account the effect of this inclination of the 
flane;e. 

COMPARISON BETVEX‘J CALCULATIOR AYD TEST RESULTS 

Only two tests are available for checking the method 
of analysis developed. One already mentioned is that of 
N.A.C.A. beam 4 described in re.ferance 2. The second one 
is described in reference 4. The %eam used in the second 
test had a constant cross section, but the load was applied - 
in the form of.several concentrated loads. Fi.;ure 11 shows 

. 
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the experimental and the calculated results for N.A.C.A. 
beam 4; figure 12 shows the results for the beam of refor- 
ence 4. As a matter of some intarest, the u-solution of 
reference 3, as well as the X-solution of this gaper, is 
shown in these figures. 

The agreement between test and calculation is not all 
that could be desired for N.A.G.A. beam 4. It is possible 
that some of the discrepancy near the root was caused by 
defective workmanship in one flange, which may be the rea- 
son for the decided drop in stress of one flange near the 
root. Regardless of whether defective aorkmanshfp in the 
f-lan$e caused the discrepancy, an experimental check of 
the specific influence of taper in width aggears desirable. 

The agre-ement for the beam of figure 12 is very much 
better, particularly in the critical region near the roct. 
The X-solution predicts correctly, at least qualitatively, 
the reversal in stress near the tip; the u-solution does 
not. The u-solution depends on the total shear at the 
root and gives a very good spgroximation nearthe root; it 
cannot take into account the manner in which the load is 
distributed along the span and, concomitantly, it cannot 
be exgectsd to give results in very close agreement with 
the facts outboard of tho root region, particularly if 
there are discontinuities of loading or cross section. 
IVhether such disagreement is of practical importance do- 
pends, of course, on the individual circumstances. 

Langley Memorial Aeronautical Laboratory, a 
National Advisory Committee for Aeronautics, 

Langley,Field, Va., November 16, 1939. 

c 



N.A.G.A. Technical Bote X0/-739 13 

APPBDIX 

Wumerical Example 

t 

P 

As a numerical exampl-e for -the' method of analysis de- 
veloped, the analysis of N.A.S.A. beam 4 will be .%iven. 
The dimensions of this beam are given in reference 2. The 
sfnqle-stringer beam substituted for the actual beam is 
calculated by the method described in reference 2 as fol- 
lonst- 

The compression flanqes,.. the tension fiances, and the 
longitudinals are a'ssumed to be concentrated at the&r re- 
spective centroids. The cover sheet, which is OdCJl14 inch 
thfck, is assumed to be fully effective in aidin; the lon- 
gitudinals, and the adjacent strips of sheet are added t-o 
the lonqitudinals or flanges. The shear web is also as- 
sumed to be fully effective in bending and is replaced by 
concentrated flanqes of cross -sectional area l/6 Aw. The 
area of the substitute longitudinal is calculated by for- 
mula (4) of reference 2: 

sinh IF,b 
ALS = AL ---- 

The substitute camber is taken as -;.7-_- 

cs = 5 

The subscript S is dro-oped as unnecessary for the present 
paper. With the geometrical properties of the single- 
strinqer substitute beam thus defined and listed in rows 1 
to 5 of table I, the averase section modulus I/Q can be 
computed for each,bay and is listed in row 6. 

The effect of taper in width is allowed for by fntro- 
ducing; the fictitious width bf and the fictitious sheet 
thickness tf, according to formulas (20) and (22); the- 
shear-lag parameter is then calculated by the formula 
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and listed in row 7; KL is then'listed for each bay, L 
being 19 inches for each bay, and the values of KL, sinh 
XL, and tanh HL are found in rows 8, 9, and 10, re- 
spectively. 

The next step is the computation of the coefficients 
PC 91 and y for"the system of X-equations. Some slight 
modifications were made'in this particular case to reduce 
the amount of arithmetic; The shear-modulus G appears 
as a factor in all coefficients and consequently can be 
canceled. The thickness tf for all bays involves the 
thickness t as a common factor, so that t can be can- 
celed. With these modifications, the coofflciente become 

K b’ !. P = ---- - - tnnh KL bo' . . 

. 9 
K b" = ---- -;- 

sinh 'KL b,' 

and ‘are listed in rows 11 and 12. 

Before the coefficient Y is computed, the shear far 
each bay must be computed by formula (18) or (19); tho load 
is a concentrated load of 250 pounds asplied at-the tip, 
and th-e resulting shear S i.s listed in row 13. With 
this shear S and by the use of the modifications previ- 
ously mentioned, the coefficient YP is 

and is listed ,i‘n'row 14. 

With 'these,,coofficients, the system ofoquations 
formed according to the qeneral equation (9) is 

-0.9791 x1 +0.01354 x, = 0.34 

0.01354 Xl -0.0921 xa -1-0.02068 x, = 0.06 

0.02068 X, -0.1070 x, +0.02908 X4 = 0.02 

0.02908 X, -0.1248 X4 +0.038X X, = 0.02 
I 

' - " 0.0383 X4 -0.0573 x5 .= -14.3'! 

. 

‘J 
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The solution of thiti system of equations gives the 
values of X listed in row 1 of table II. The flange 
stresses caussd by the X-group are. 

aX = 6 (1 -I- $j 

and are listed in row 2 of table II. This tabulation com- 
pletes the X-solution of the substitute beam. The total 
flange stresses 0 in the actual beam are found by adding 
the stresses GX to the flange str.esses .ap, calculated 
for the actual beam by the ordinary bending theory, as 
shown in rows '3 and 4 of table II. -Figure 11 shams the re-- 
sults graphically, Strictly speaking, the stresses mithin 
each bay should be calculated by using formulas (B-8) of 
reference 1 or (A-3) of reference 2; this refinement, 
however, is -seldom necessary. 
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TABLE I . 
Basic Propertfes of Beam and Goef-ficfanta 

for Recurrence Pormula 

Bay .-.-Mm--- 
1 AF 

2 AL 

3 b' 

4 hlv 

5 c 

6 I/$ 
7 Ir'". 

a KL 

9 sf.nh XL 

10 tanh KL 

11 P 

------ 

1 

-0.1465 

.330 

6.71. 

3.00 

.615 
I-- 

1.523 

. 01392 

2’. 240 
. . . 

4.643 

,978 

. 0365 

.00770 

225.0 

24.76 
----. 

---- -- 

2 3 
------ -- 

0.1535 0.1600 

.P95 .460 

7.93 9.15 

3.60 4.20 

l 725 .840 
----- --e-w-- 

2.117 2.805 

.00916 .00643 

1.815 1.520 

2.988 2.177 

.940 ,909 

.0426 dO495 

.01354 .02068 

1.8 7 .5 -6.1 .O 

14.80 14.86 
u-c___ _- 

-- ----- 

4 5 
--- ---- 

0.1665 0.1735 

,525 .590 

10.37 11.59 

4.80 5.40 

.955 1.070 
I---------- 

3.59 4.47 , 

. (30471 .00357 
% 

.1.304 1.163 

1.706 1.443 

,862. .822 

.0575 ,0673 

* .02908 .0383 

L40.7 I.25 .o 

14.88 14.90 
mu- -- 
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1 x 

2 OX 

3 UP 

4 0 

----- 
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TABLE II 

Flange Forces and Stresses 

1 
.------.- 

0.4 

3 

1795 

1798 

----- 

-- 

2 '3 --------- 

5.0 25.1 

38 185 

2390 2920 

2798 3105 

,-- --- 

4 

89.4 

631 

3040 

3671 

17 

5 ---- 

272.5 

1847 

3015 

4862 
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Figure 3.- Typical cross sections af eubstitute single-stringer beama. 
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Figure 4.- Division of beam into bays. 

. 1 = Inboard 
o = outboard 

Figure 5.- Forces acting on individual bay6. 
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(a) P - forces. 

(k) X - forces. 

Figure 6.- Division of forces into P - forces aad X - forces. 
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la) P - POW. (b) G - group, (4 h-1 - e=ow. 

Bigure 7.- Forces and deformations on cover of bay n. All forces and 
deformations are shown as positive. 

Figure 8.- Types of loading at tip bay. 

AL 

Figure Y.- Group of X - forces on 
cambered beam. 

Figure IO,- Beam with both 
sides cambered. 
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Figure ll.- Flange stresses in tapered beam with tip load. Experimental 
data from reference 2. 
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Figure 12.- Plunge stresses in straight beam with 
distributed load. Experimental data 

from reference 4. 
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